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Abstract. Analytic continuations into the left half of the complex angular momentum 
plane permit the derivation of some exact integral expressions for the attractive and 
repulsive Coulomb amplitudes. The problem of background integrals is thus removed and 
the expressions may be written either in a form which is suitable for expressing the 
amplitudes as a sum over all the Coulomb poles or as integrals in regions of the complex 
plane which contain no poles. The latter forms are extremely convenient for the appli- 
cation of the saddle-point method and are used to obtain the semiclassical limits for the 
amplitudes. All the terms of the Poisson summation formula are correctly taken into 
account and generalisations to other cases are discussed. 

1. Integral representations for positive I 

The amplitude for non-relativistic elastic scattering in a Coulomb potential V ( r )  = 
z 1 z 2 e 2 / r  (where z le  and z2e are the target and projectile charges and r is their 
separation) is given (e.g. Landau and Lifshitz 1965) by 

In this equation a o = a r g I ' ( l + i ~ ) ,  k is the wavenumber and the Sommerfeld 
parameter 77 is given by 77 = z l z 2 e 2 / ~ v ,  where U the relative velocity of the charges for 
large separations. Note that 77 > 0 for a repulsive potential and 77 < 0 for an attractive 
potential. The Rutherford cross section aR(0)= lf(e)12 = ~ 7 ~ / [ 4 k ~  sin4(&9)] is 
independent of the sign of 77 though this is not true of the amplitude which satisfies 
f ( - 7 ) ) =  -f*(7)). 

The partial wave representation of an elastic amplitude is usually written 

where P,(cos e )  are the Legendre polynomials and SI are the elastic S-matrix ele- 
ments. For Coulomb scattering 

S,  =r(l+ 1 + i T ) / r ( l +  1 -iq). 

If the potential we are considering tends to zero sufficiently rapidly as r -+ CO then the 
S-matrix elements tend to unity for large 1 (e.g. de Alfaro and Regge 1965) and the 
factor [SI  - 11 ensures convergence of the partial wave series. However, the infinite 
range of the Coulomb potential leads to a phase-shift (t arg S , )  which is divergent for 
large 1 and the sum in equation ( 2 )  does not converge. It can, however, be shown (see 
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1546 N Rowley 

the appendix) that this lack of convergence may simply be removed by writing the 
Coulomb amplitude of equation (1) as 

for 8 # 0. The convergence factor has been chosen for our future convenience in P 3. 
We may now rewrite this amplitude using the integral transformations 

APA-~(cos 6 )  exp[*iT(A -i)]S;-i dA 
1 f(e)= -- lim J 2ka++o c COSTA 

and 

where PA-& is the Legendre function of the first kind, 

Si-4 = S A - 4  exp(-ah 2 ) with SA-h = T(A +f+iq)/I'(A + i - i q )  

and C is any contour enclosing the positive real axis (but no poles of SA-4) in a 
clockwise direction and in a region of the complex plane where the integrals converge. 
(Throughout the paper A is a continuous complex variable.) Equation ( 3 c )  is known 
as the Sommerfeld-Watson transformation and is obtained using 

p,(cos(T-e))= (-i)'Pl(cos e) f o r l a 0 .  

Equation ( 3 b )  may be used to obtain the Poisson summation formula by appropriately 
expanding cos nA for A just above and just below the real axis. We obtain 

We may further split the amplitude by introducing the functions (Nussensweig 
1965, Fuller 1975) 

P:-~ (COS e)= ~ [ P ~ - ~ ( c o s  ~ ) T ( ~ ~ / T ) Q , - ~ ( C O S  e)], (5 1 
where QA-~(cos~)  is the Legendre function of the second kind which has poles at 
A = - ( I  +f), 1 = 0 , l  . . . , whose residues are just &(cos 8) (Abramowitz and Stegun 
1965). Using PA-f =Pi -& + Pi-i  we obtain 

with 

We see that for large A the integrands in equation (7a) contain a factor exp(iq5h), 
with 4 = 2 ~ m  f 8. For 4 # 0 (i.e. 8 and m not both zero) it is possible to take each 
integral to infinity slightly above or below the real axis (e.g. along A = Re A (1 f iw) 
with 0 < w << 1) depending on whether q5 S 0 and obtain an integral which is absolutely 
convergent without the factor exp(-aA '). This factor then simply ensures that we pick 
up no additional contribution when we bring our integration path back on to the real 
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axis at 00. We may, therefore, drop the convergence factor completely (for 8 # 0) and 
write 

(7b) 
1 "  

fm(8)=% I AP:-i (cos 8)SA-i exp(27rmiA) dA, 
0 

where it is now implicit that the integrals are taken to CO in a region of the complex 
plane where they converge. 

2. Usual derivation of the semiclassical limit 

In the semiclassical limit the S-matrix may be written as SA-l = exp(2iu(A)), where 
~ ( h )  is the WKB phase which is related to the classical deflection function @ ( A )  by 
2 du/aA = @ ( A )  (Newton 1966) with @ ( A ) =  2 tan-'(q/A) for the Coulomb potential. It 
is also usual to replace P:-j (cos 8) by their asymptotic (large A )  approximations P:-j 

(valid for A sin 8 2 1) 

Pi-4 -& = exp[*i(AB -:7r)]/(27rA sin (8) 

The amplitudes f: now become 

le (9 ) 
1 

ik 
fm(8)=-exp(r$i7r)(27r sin 8)-"' A 1'2 exp[i(*A8 +2u(A)+27rmA)] dA. 

If we can find a real positive A which satisfies 

*t+@(A)+27rm =0 ,  (10) 

then, ignoring the variation of A"', the integrand of equation (9) has a point of 
stationary phase at the classical angular momentum A (i.e. the deflection function 
exists at an angle 78  - 27rm and there is a classical contribution to fk(8)). Such terms 
may be evaluated by the method of stationary phase or the saddle-point method (Anni 
and Taffara 1974, Rowley and Marty 1976). All other terms are assumed to be 
negligible. For q > 0 the Coulomb deflection function lies between 0 and 7r for real 
positive A and thus only the term fi (8) has a stationary point giving 

f ( q > O ) = f ~ ( e ) = ~ % A P ~ - ~ ( c o s  8)SA-i dA. 

For q < 0 we have -7r < @ ( A ) <  0 for real positive A and we obtain 

1 "  
f(q < O ) - f o ' ( O ) = %  I, AP:-i (cos 8)SA-i dA. 

Note that since the lower limits of these integrals are zero the asymptotic expressions 
for Pf-4 are not valid over some part of the integration paths. These limits are often 
replaced by -00 for analytic convenience. 

The evaluation of the other terms f",(O) is very difficult for even if we close the 
integrals in the first or fourth quadrants of the complex A-plane (so as to obtain no 
contribution at CO) we are still left with unpleasant 'background' integrals along the 
imaginary axis. Therefore since equations (lla, b )  (with the lower limits replaced by 
-00) do give the exact Coulomb amplitude in the semiclassical limit we shall examine 
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this result in more detail. (Note that the semiclassical limit h+O is physically 
equivalent to 17 I + 00). 

We should note that for A sin 8 s  1 there are uniform approximations to 
PA-~(cos e )  which are valid up to either 8 = 0 or 8 = T (e.g. Berry 1969). We shall not, 
however, discuss these approximations since our main aim is to derive an exact 
integral expression for f ( e )  which is valid for all 8 # 0, q # 0 and which correctly takes 
account of contributions from all values of m. We shall in fact show that for small 171 
the terms m # 0 contribute significantly to the cross section. 

3. Negative A 

The analyticity of S in the left half-plane has been discussed by Singh (1962). For all A 
(real or complex) we have the identities (Abramowitz and Stegun 1965) 

s - ~ - $  =sA-4 sin T(A +$+iT)/sin T(A +i - - iT)  

~ - ~ - i  (cos e)= P,-& (cos e). 

(12) 

(13) 

and 

For integral values (i.e. A =I+;) P-r-l(cos O)=Pl(cos 0 )  and S - r - l  = - S t  and since 
the convergence factor we have employed is invariant for 1 + -(1+ 1) we easily obtain 

where the summation now runs over both positive and negative 1. We should note that 
although the Schrodinger equation defining 4 - 4  is invariant under A + -A this does 
not imply that the S-matrix is itself invariant under this transformation. Likewise no 
simple relationship between S-r-l and SI is guaranteed by the invariance of the 
equation for 1 + -(I + 1). Indeed for an arbitrary potential the Schrodinger equation 
may not lead to a well defined S-matrix for Re A < 0 (de Alfaro and Regge 1965). 

Equation (14) gives the integral transformations 

exp[*iT(A --;)]Si-h dh, 

where r encloses the entire real axis. Note that the Sommerfeld-Watson form of the 
- equation is no longer useful since A(COS(T - e))= -(-l)'Pl(cos) for I s 1. Indeed 

(16) 

for the Coulomb S-matrix (see, however, 0 6). 
Using equation (15) we obtain the new Poisson summation formula 

Note that for 17 > O  there are no poles of SA-h in the upper half-plane. We may, 
therefore, take all the integrals with m > 0 to fa slightly above the real axis (as in 0 1) 
and drop the convergence factor. It is then only necessary to close these integrals in 
the upper half-plane to prove that they are all identically zero. The terms m c 0 are 
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all non-zero due to the poles of r(A + f + i ~ )  at A =-(I +$+iq) .  For 7 < O  it is the 
terms m < 0 which identically vanish. 

In equations (15) and (17) we may clearly use any function SA-$ which reduces to 
SI for A = 1 +:. The problem is much simplified if we introduce 

SA-& =SA-$ [1 +exp(-27~7)exp(2riA)]/[l -exp(-2nq)]. 

S-,-i = exp(-2rih )SA-, . 

(18) 

This function has the properties Sl = SI(l = 0, *l, . . . ) and 

(19) 

Note also that all the poles of SA-h have been suppressed though gA-i possesses an 
essential singularity at 03. 

Inserting S into equation (17) and using the usual technique for dropping the 
convergence factor we see that only the terms with m = 0 and m = -1 are non-zero. 
Making the substitution A + - A  we also see that these two terms are exactly equal 
giving 

f ( e ) = %  lim 1 APA-~(COS 0)Si-i dA 
a2 1 

a - + O  --oo 

1 

By using PA-i = Pl-4 +Yh--f we further obtain 

The equality of these two formulae may be verified using the identity 

pFA-4 = P:-& i i  cot T ( A  -f)pA-4. (22) 

Both forms of equation (21) are valid irrespective of the sign of 7. If we now take 
77 > 0 all the poles of SA-$ lie in the lower half-plane and the first form of equation (21) 
yields 

1 

For 7 < 0 the second form of equation (21) gives 

Note the similarity between these exact expressions and their semiclassical counter- 
parts equations ( l l a ,  b) .  Theses integrals are very convenient for the application of 
the saddle-point method. For example for 7 > 0 the integration path may be defor- 
med anywhere in the first, second and fourth quadrants without picking up any poles 
(subject to the condition that the integral must remain convergent). It is thus easy to 
follow the usual path which cuts the positive real axis at an angle of -ar (Rowley and 
Marty 1976). 
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The other forms of equation (21) give integrals which are useful for expressing the 
amplitudes in terms of their respective poles. After a little manipulation we find for 
77'0 

and for q < 0 

-1 
lim J m  APi-4+i.(cos e)sLI exp(2.rriA) dA. 

f (e )=ik[1+exp(2~q)]a++o -m 

4. Semiclassical limit 

Using the reflection properties of P A - 4  and SA-4 we may use equations (20) to show 
that 

Comparing this with equation (4) we see that the integrals with m # 0, *l have been 
implicitly summed and give contributions which are just proportional to the m = *l 
terms. In the semiclassical limit the extra terms may clearly be neglected though they 
contribute significantly for small 171. This resplt is not easily seen from a semiclassical 
argument since the terms never possess a stationary point. In the limit I ~ ) + c o ,  
equation (25) may be written 

m 

(26 )  
1 f ( e ) = %  lim J ~ ~ ~ - t ( c o s  e)~:-~[i-exp(r2.rriA)]dA a-+o 0 

depending on whether q SO. By introducing P;-4 the integrals may again be per- 
formed in regions of the complex plane where the convergence factor is unnecessary. 

For lql+ CO the factors [ l  - e x p ( - 2 ~ ) ~ ) ) ]  in equations (23a, 6 )  may be replaced by 
1. Even for 1771 = 1 the deviation from unity is only 0.25'/0. We thus obtain 

APh-4+ic(cos e)S;-4 dA 

and 

We should, however, remember that these expressions underestimate the Coulomb 
amplitude by a factor 2.rrl.rll for 2 . r r lqI~  1. 

In the semiclassical limit equation (18) gives, for A on or near the real axis, 

S,4-4(7) +m)=SA--f (29) 

&-4(7, +-CO)= -exp(2.rriA)SA-~. (30) 

and 
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Using equation (19) these immediately give for 77 > 0 

S-,-i =exp(-2riA)S~-t 

and for g < 0 

S-,-k = exp(2.iriA)SA-i. 

Taking the usual relation between the deflection function and the phase of S we find 
for q > O  

@ ( - A ) =  - @ ( A ) +  2 7  (33) 

and for 7 < O  

O ( - A ) = - @ ( A ) - 2 r .  (34) 

These equations give the well known results @(O)=  *.ir respectively and also tell US 
how to interpret the deflection function for negative classical angular momenta in a 
manner consistent with the analyticity of S .  

Equations (27) and (28) are very similar to equations ( l l a ,  b )  except for those 
portions of the integrals between -CO and 0, and as we have already stated the lower 
limits of equations ( l l a ,  b )  are usually extended to -CC anyway. We can now find the 
significance of these negative A contributions in terms of the original Poisson formula 
(6). To do this we again introduce the approximate functions P:-h (cos 6). (Noting 
that in equations (27) and (28) we may deform the integration contours away from the 
origin avoiding the use of these functions for small A. )  Since the functions contain a 
factor A -''' the origin is a branch point and we introduce a cut along the negative real 
axis. It then follows that for real positive A 

Equations (27) and (28) may then be written (again dropping the convergence factor) 

(37) 
1 "  

f ( q  >O)=, jo  ASA-4(P;-i -exp(-27riA)P:-k)dA =fo - fT l  

and 

(38) 
1 "  

f(7 <O)=zb ASA-f(& -exp(2~iA)&)dA =fi -fYl, 

i.e. those parts of the integrals between -CC and 0 are just other terms ( 7 6 )  of the 
original Poisson formula (6) which were neglected because they possessed no sta- 
tionary points. These terms are only important at backward angles (for g > O ,  
ICl (.ir)l= Ifi (..)I and for g < 0, ( T ) I  = If: (T)/) and represent flux 'leaking' from 
the non-classical regions 101 > 7 ~ .  Note that as A + CO the classical deflection function 
possesses an infinitely wide 'rainbow' at 0 = 0 which prevents the leaking of flux from 
other non-classical regions. For the same reason the amplitude diverges as 6 + 0 and 
the forward angle Rutherford cross section is a perfect example of classical rainbow 
scattering (Berry 1966). 
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5. Saddle-point evaluation of !(e) 

An approximation often taken for the Coulomb phase in the semiclassical limit is 

2ia(A) = 2ia(0)+ (A + iq) ln(A + iq)-  (A - i7)) ln(A - iT)- 2i77 In 77, (39) 

with a ( O ) =  q(1n 77 - 1). This expression may be obtained from the one-turning-point 
WKB method by application of the usual Langer transformation (e.g. Berry and 
Mount 1972) or, more simply, by using the asymptotic approximation T ( r )  - 
( 2 ~ ) ’ ’ ~  e-zzz-1’2(1 + O(z-’))  (Abramowitz and Stegun 1965) in the exact expression 
for SA-&. It can readily be seen that equation (39) leads to equations (31) or (32) 
depending on whether 77 is positive or negative. The expression has the disadvantage 
that we introduce branch points at A = i i q ,  which are associated with the classical 
phenomenon of ‘orbiting’ when the WKB phase is calculated in the one-turning-point 
approximation. These singularities will be discussed elsewhere. 

In the semiclassical limit the integrals (27) and (28) can be performed by the 
method of stationary phase or by the saddle-point method (Rowley and Marty 1976). 
The expansion about the saddle point automatically gives a convergent integral and 
we may again drop the convergence factor. For 77 +CO we obtain the well known 
result 

phere  A = 77 cot(t8). Noting that 

2a(A)- A8 - 2a(0)  

= jo 0 dh - J d(OA)= -1 h dO = -277 In sin&), 
0 n 

we find 

Comparing this with the quantal result given by equation (1) we see that the expres- 
sion gives the exact Coulomb amplitude in the semiclassical limit since 

In this equation we have used 

2 4 ) =  2a(0)+$0(0)+$0’(0)+* . . = 2 a ( o ) + t r + o ( q - 1 ) .  (44) 

Note that an error of $ 7 ~  in the phase of f ( B )  is made if uo is incorrectly associated with 
~ ( 0 ) .  The corresponding results for 77 < 0 may be derived similarly. 

6. Generalisation 

For any S-matrix satisfying S - I - ~  = -SI (odd in ( I + + ) ) ,  equations (14), (15) and (17) 
are valid. However if S - I - ,  = SI (even in (I +f)), we can obtain the analogous results 
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(henceforth any necessary convergence factors are implicit) 

m 1 
= - f ~P , - f ( cos ( r  - e)) exp[ir(A -i)]sA-i exp(2rmiA) dh. 

(47) 

ik' m=--oc --5 

Since we can write any Si as a sum of two terms which are odd ( S ; )  and even ( S : )  
in (I++) we can represent the scattering amplitude as a sum of equation (15) for S ;  
and equation (46) for St,  or equation (17) for S ;  and equation (47) for S:.  Note that 
in equations (45), (46) and (47) we may retain the complete [ S l -  11 or [SA-: - 11 from 
equation (2). 

In the semiclassical limit the derivative of the phase of S is a well behaved function 
of A (for real A )  and on the real axis the only possible odd terms of S must satisfy 

SI,-$ = exp(r2riA)SL-4. (48) 

STA-4 = s:-i * (49) 

The only even term satisfies 

The above S-matrices correspond to O(O)= r, -r and 0 respectively and we shall 
label then S(r), S ( - r )  and S(0). 

The amplitudes from S ( * r )  may be written (using equation (17) and making the 
substitution A + - A  in the m 5 0 terms) 

cc 1 "  
f ( e ) = %  2 ( - 1 1 ~  J A P ~ - ~ ( C O S  B)SA- t  (*r)exp(*2~miA)dA. (50 )  

m=O --.I. 

For S(O), equation (47) gives 

f ( e )  = 1 (- 1)" I ~ ~ ~ - i ( c o s ( r  - e)) exp[ir(A - + ) ] S , + - f ( o )  exp(2rmiA ) dh. ( 5  1) 

These equations may easily be related to the usual semiclassical expressions (9) by 
making the substitution A +-A for those parts of the integrals between -a and 0 and 
by introducing I? -&.  However in the present form the equations permit the use of 
more powerful techniques for determining the relative importance of the various m 
values. 

Note that in the one-turning-point approximation for scattering at an energy E in 
a potential V ( r )  we obtain O(0) = r if V(r )  > E for any r .  If the potential is regular at 
the origin and E > V(r )  for all r then O(0)  = 0. The attractive Coulomb potential, 
being singular at the origin, is an exception to this result and has O(0) = -r. 

It is interesting to note that for a repulsive potential which dominates the centri- 
fugal potential for small r the exact S-matrix satisfies S - , - &  = SA-& exp(-2riA) (de 
Alfaro and Regge 1965) in agreement with our semiclassical result. However, no 
simple relations similar to equations (48) and (49) can be proved from the Schrodinger 
equation for an arbitrary potential. 

30 1 "  
m=O -" 
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7. Conclusions 

By introducing analytic continuations for Re A < O  we have derived some exact 
integral expressions for the Coulomb amplitude. The semiclassical limit then followed 
naturally from the symmetry properties of the S-matrix without any of the ad hoc 
assumptions of the usual theory. In particular equations (27) and (28) are indepen- 
dent of any stationary phase arguments. The m # 0 terms are dealt with exactly and 
--CO emerges as the correct lower limit to the integrals. 

The results easily generalise to any semiclassical S-matrix and yield integral 
expressions in which the m # 0 terms may be properly analysed. 
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Appendix 

Consider the function f,(e) defined by 

with Sf = r(l+ 1 +iq) / r ( I  + 1 - iq) and a > 0. The sum is clearly absolutely con- 
vergent for all a > 0 and we may write (Yennie er a1 1954) 

(1 -COS elfol ( e )  

-(l+ I ) [ s ~ + , - ~ ]  exp[-a(I+?)*]}Pf(cos e), (A2) 

( ~ + ~ ) P ~ + ~ ( c o s  e ) - ( 2 1 + 1 ) ~ 0 ~  epf(cos e)+ipI-l(cos e ) = o .  
where we have exploited the recurrence relation 

('43) 
We thus obtain 

00 

(1-cos e) lim f o ( e ) =  [(21+1)S,-1Sf-1-(1+1)S~-+l]Pf(cos e), (A4) 

where we have removed the convergence factor from the right-hand side of this 
equation since it is easy to show that the remaining sum is absolutely convergent even 
for a = 0. Note that the above limit is independent of whether the -1 in the square 
bracket in equation (Al)  is present or not. Inserting the explicit form of SI into 
equation (A4) we obtain 

Q++o f = O  
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Consider now the Coulomb amplitude f(8) given by 

If we attempt to make a Legendre polynomial expansion of this expression we find 
that the expansion coefficients are not well defined due to the singularity in f ( 8 )  at 
8 = 0. However, the expansion coefficients (21 + l )af  of the expression 

r ( l + i v ) (  2 ) i T  

r ( l  -iT) 1 -cos e 2ik(l  -cos 8)f(8)= -2i77 

are well defined despite the remaining singularity in the argument. The quantities af  
are easily shown to be just the 2772r(l + iT)/ r ( l+ 2 + i v )  of equation (A5) and, since 
the summation in this equation is absolutely convergent, we immediately obtain 

m 

r ( l+ iq )   cos e ) = ( i - c o s e )  lim fo l ( e ) .  2ik(l-cos8)f(8)= f = O  ( 2 1 + 1 ) [ 2 ~ ~  T ( l  + 2 + i s )  
U - C O  

(A8) 

We may, therefore, drop the -1 from the square bracket of equation (Al)  and write 
the Coulomb amplitude as 

for O f  0. This result is not dependent on the particular convergence factor 
exp[-a (1 +;)’I which has been chosen for convenience in the text. 

The above proof depends on the fact that the factor (1 -cos 8) in equations (A2) 
and (A7) removes the singularity in If(8)l at 8 = 0. (Yennie et a1 1954.) The same 
technique may also be applied (iteratively if necessary) to obtain more rapid con- 
vergence of similar partial wave series (e.g. Alder and Pauli 1969). 
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